GLMRIS BRANDON ROAD UPDATE -

TO CHICAGO AREA WATERWAY SYSTEM ADVISORY GROUP

Jeff Zuecher
GLMRIS Program Manager

26 July 2018
STUDY SCOPE

2014 GLMRIS Report provided basis for this study

GLMRIS-BR Study Goal

- Reduce the risk of one-way aquatic nuisance species transfer to Great Lakes Basin
- Minimize impacts to multiple waterway users
AQUATIC NUISANCE SPECIES

Alternatives adaptable for future species

Modes of Transport:

- Swimming
- Floating
- Hitchhiking

GLMRIS-BR

- Bighead and Silver Carp

- *Fresh Water Crustacean* (Apocorophium lacustre)
WHY BRANDON ROAD?

- **Effective**
 - ~ 34 foot high dam
 - Upstream movement through lock
 - Avoids flood bypass via Upper Des Plaines

- **Relevant**
 - Identified in 3 of 6 structural alternatives (GLMRIS Report)

- **Responsive**
 - Stakeholder input
 - Upstream of leading edge of Asian Carp population

- **Valuable**
 - Enhance effectiveness of existing technologies

- **Minimizes Impacts**
 - Location seeks to minimize impacts to current waterway uses.
SAFEGUARDING NATION’S ECONOMIC INTERESTS IN THE GREAT LAKES BASIN AND NATION’S INLAND WATERWAYS

Brandon Road Lock
- Highly utilized for commercial navigation
- 11.3M tons of cargo transit each year
- $319M in annual transportation benefits
- Link between Great Lakes and Gulf of Mexico

Great Lakes Basin
- 63M recreational fishing trips annually with about $1.3B in net economic value
- Commercial fishing generates about $20M in revenue
WHAT ARE WE TRYING TO PROTECT?

- 20% of the world’s fresh water resource
- Over 5,000 Great Lakes tributaries
- 41% Great Lakes Basin is governed by Canada
- >60 fish species are special status
- 10 Threatened & endangered mussel species
- ~ $1.8B GLRI & Great Lakes Legacy Act (2010-present)
CONSEQUENCES OF ANS ESTABLISHMENT

Bighead and Silver Carp

NOAA modeling – Lake Erie

- Asian Carp biomass could range 10% to 34%

Great Lakes Consequences:

- Substantial economic impacts
- Management actions would be in multiple locations
- Perception of quality decreased
- Safety
ANS CONTROLS

Modes of Transport:
- Swimmers
- Floaters
- Hitchhikers

Nonstructural Measures

Water Jets

Electric Barrier

Engineered Channel

Acoustic Fish Deterrent

Flush Lock
ALTERNATIVES

<table>
<thead>
<tr>
<th>Alternative</th>
<th>ANS Control Measures/Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>No New Action (No Action)</td>
<td></td>
</tr>
<tr>
<td>Nonstructural Alternative</td>
<td></td>
</tr>
<tr>
<td>Technology Alternative – Electric Barrier</td>
<td></td>
</tr>
<tr>
<td>Technology Alternative – Acoustic Fish Deterrent</td>
<td></td>
</tr>
<tr>
<td>Technology Alternative – Acoustic Fish Deterrent with Electric Barrier</td>
<td></td>
</tr>
<tr>
<td>Lock Closure</td>
<td></td>
</tr>
</tbody>
</table>

Public Education and Outreach
Monitoring
Overfishing/Removal

Engineered Channel
Air Bubbles
Flushing Lock
Electric Barrier
Mooring Area

CSSC EB
FWOP

Nonstructural
Boat Ramp

Engineered Channel
Air Bubbles
Flushing Lock
Acoustic Fish Deterrent

Nonstructural
Boat Ramp

Engineered Channel
Air Bubbles
Flushing Lock
Acoustic Fish Deterrent

Electric Barrier
Mooring Area

CSSC EB
FWOP
EVALUATION CRITERIA

- Effectiveness
- Relative Life Safety
- Impacts to Navigation (NED Costs)
- Costs
 - Construction
 - Operation, and Maintenance, Rehabilitation,
 - Repair and Replacement
 - Mitigation
- Ability to cycle in new
 - Nonstructural ANS Controls
 - Structural ANS Controls
- Number of Structural Control Points in the CAWS
- Modes of Transport
TENTATIVELY SELECTED PLAN (TSP)

Overview:
- Reduces risk of Mississippi River Basin ANS establishment in Great Lakes Basin
- Allows for continued navigation
- Nonstructural measures
- Mitigation required to address impacts to connectivity

Estimated Cost to Construct: **$275.4M**
Estimated Cost to Operate and Maintain: **$8.2M/yr**
Estimated Nonstructural Measures: **$11.3M/yr**
Estimated Time to Construct: **5 yr**
TSP IMPLEMENTATION

- Life safety primary consideration
- Safety evaluation of constructed project
 - USCG, USACE and Navigation Community
- Assumed Operations:
 - Electric Barrier: When no vessels are immediately downstream of barrier, within channel or lock
 - Complex noise on when electric barrier off
- Seek to operate as effectively as possible within acceptable safety parameters
- Nonstructural measures begin as soon as project funded

Flushing Lock: Clears floating life stages.

Acoustic Fish Deterrent: Deterrent when electric barrier turned off during lockage.

Engineered Channel: Creates uniform concrete surface w/o fish habitat; increased effectiveness of measures. Platform for future measures.

Electric Barrier: Deterrent for adult fish.

Fish Entrainment Deterrent: Bubble curtain to deter/dislodge adult & juvenile fish.

Mooring Area: Barge staging area

*Pending further study, speakers may be placed in lock.
BRANDON ROAD
WHAT HAS CHANGED SINCE PUBLIC REVIEW

• Cost

• Des Plaines River Mitigation Plan

• Non-Federal Sponsor

• Replacing Water Jets with Air Bubble Curtain

• Schedule
BRANDON ROAD
KEY STAKEHOLDER CONCERNS

- Navigation Impacts
- Effectiveness of Preventing Passage
- Safety
- O&M Responsibilities
Key Schedule Drivers

- Completion of Chief’s Report
 - Non-federal sponsor
 - Internal & external reviews
- Non-federal sponsor/cost share agreements (DA/PPA)
- Availability of PED funds in FY19/20
- Complex innovative designs increase PED duration
- Construction authorization & appropriation
- Maintaining navigation during construction extends duration

* PED is able to begin after submittal of Chief’s Report to ASA(CW) and Design Agreement is signed pending funding